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Gareth Loy 
Computer Audio Research Laboratory 
Center for Music Experiment 
University of California, San Diego 
La Jolla, California 92093 USA 

Musicians Make a 

Standard: The MIDI 

Phenomenon 

Introduction 

MIDI (Musical Instrument Digital Interface) is a 
specification of a communications scheme for digi- 
tal music devices. Like all products of human cun- 
ning, it has its good aspects, and bad ones. Its ad- 
vent is more notable for the effect it has had on the 
music community than for its prowess as a net- 
work. Whether MIDI gets good or bad reviews de- 
pends to some extent on whether it represents a 
step up or down in expressive potential from the 
system the reviewer is currently using. It makes 
some happy that a networking standard exists for 
music instruments; it makes others frustrated that 
it has so many limitations. The limitations include 
limited bandwidth between devices, limited fre- 
quency and time resolution, limited access to 
synthesizer parameters for such things as timbre 
modification during synthesis, and lack of bidirec- 
tionality in communications. The conception of 
music embedded in the standard seems archaic and 
inflexible, and favors piano-keyboard type synthe- 
sizers. However, MIDI has flourished and is now 
the de facto industry standard. In spite of its limita- 
tions, it is quite serviceable for a variety of tasks. 
Its usefulness comes in no small part from its being 
a standard, whatever its limitations. Its success has 
sparked interest in the development of other stan- 
dards for domains such as music databases, editing, 
and for extensions or replacement of the MIDI stan- 
dard itself. 

This article is something of a survey, tutorial, and 
review, all mixed together. Under discussion are the 
following topics: 

The reference model for MIDI 
The MIDI 1.0 specification 
The control paradigm MIDI implements 

The implications of this paradigm for perfor- 
mance capture and synthesizer control 

Conclusions regarding its usefulness for the vari- 
ety of different tasks in which it could find 
application 

Beyond this, we will look at the forces that 
brought MIDI into being, and consider what the fu- 
ture holds, now that we know that MIDI will be a 
part of it. 

The basic message is that while MIDI has been 
characterized as rock-n-roll's answer to computer 
music, this condescension is not warranted. If the 
number of articles published on the subject of mu- 
sic networking is any indication (Bischoff, Gold, 
and Horton 1978), the subject has been almost com- 
pletely ignored. This will change now that there is 
a common technological base from which to work. 
For instance, networking is very important to the 
study of live performance, since the latter can be 
viewed in terms of the former. 

In spite of its limitations, MIDI provides tools 
that can be helpful to the study of performance 
practice, computer-assisted performance, and im- 
provisational composition. Simple as it is, it has 
intrinsic worth for practicing musicians and com- 
posers. Grasping the lessons that the MIDI phe- 
nomenon has to teach will be revealing no matter 
what its direct usefulness. It will probably lead 
more people to more new insights about music per- 
formed live with computers than anything since the 
GROOVE system (Mathews and Moore 1970). To 
this end, my hope is that the serious study of MIDI 
will lead to its own betterment. 

Motivations for MIDI 

MIDI was developed by several commercial syn- 
thesizer manufacturers over the last few years. The 
original motivation was to allow commercial syn- 
thesizers to be connected together so that they 
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Fig. 1. Block diagram of 
MIDI transmitter and re- 
ceiver circuitry. 

Opto- to UART isolator from UART 

Vcc Vcc 
N.C. y 

Gnd Gnd 

MIDI IN MIDI THRU MIDI OUT 

might share control information, such as the ges- 
tures of a musician. Other benefits sought included 
hardware extensibility, protection from obsoles- 
cence, and interfacing to digital computers. The lat- 
ter can provide for multitrack recording/playback, 
sequence editing and composition, score display, 
and music printing. 

It is important at the outset to say that MIDI is 
designed as an event-based network, not a sample- 
based one. What MIDI communicates is not sam- 
pled waveforms, but indications about pressed keys 
and switches, turned knobs and pedals-in other 
words-human gestural control information. 

MIDI Specification 

The first order of business is to present the MIDI 
1.0 specification, which is given here in an abridged 
form, suitable for the issues under consideration.' 
While I have tried to keep back my observations 
until the concluding section, it seems that some 
blows must be struck while the iron is hot; so 
where I have been unable to restrain myself from 
critical observation, I have enclosed these com- 
ments in braces {}. 

MIDI was loosely adapted from the serial data 
transmission technology developed for computer 
terminals. The basic idea involves a two-layer speci- 
fication: a physical interconnection scheme, and a 
code to communicate information across the chan- 
nel so created. Obvious requirements for the physi- 
cal layer are that it must be rugged, capable of driv- 
ing signals over medium distances without loss, 
resistant to electrical and magnetic interference, 
noninterfering so as not to pollute nearby analog 
signals, and capable of the requisite transmission 
bandwidth. The code layer must be as concise as 
possible while still permitting all the forms of ex- 
pression required by the communicating devices. It 
must be extensible, fault tolerant, and yet efficient. 
Both layers are also constrained to be extremely 

cost-effective, meeting the demands of high volume 
manufacturing. While we will find that MIDI satis- 
fies these criteria, later we will discuss some other 
criteria that were overlooked. 

The Physical Specification 

The physical medium is a simple point-to-point 
opto-isolated 5 ma current loop utilizing a unique 
180 degree 5-pin DIN connector (Fig. 1). Only three 
of the pins are used. Cannon XLR connectors were 
originally specified as an alternative suitable con- 
nector, but this was subsequently dropped. The 
cable is made of a shielded twisted pair, the shield 
being grounded only at the source end. Each twisted 
pair is a separate run that implements a one- 
direction transmission line. MIDI devices are to 
have a MIDI input, and output jack. In addition, de- 
vices can have a MIDI THRU (through) jack, which 
passes a buffered electrical copy of the input signal. 
(Note: MIDI input is not connected to MIDI out- 
put, but to THRU.) Information is transmitted as 
asynchronous serial data at an aggregate data rate of 
31.25 Kbaud (31250 bits per second). {No one seems 
to know for sure why this particular figure was 

1. Readers interested in obtaining a copy of the complete specifi- 
cation should contact the International MIDI Association, 11857 
Hartsook St., North Hollywood, California 91607, telephone 
(818) 505-8964. 
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Fig. 2. Functional compo- 
nents of a conventional 
MIDI synthesizer. Shown 
here connected to a com- 
puter, the standard MIDI 

synthesizer functions in- 
clude I, 0, and T (MIDI 
IN, OUT, and THRU, re- 
spectively); MIP (MIDI 
input processing); K&K 

(keys and knobs); KKP 
(key and knob processing); 
and SYN (the synthesis 
engine). 

I K&K 

User-supplied 
transform 

S sMIP yteiKKPt 

T SYN O 
- 

I-- 

Synthesizer Computer 

chosen, but it is noted that it equals a 1-MHz clock 
divided by 32.} Serial MIDI data is transmitted as 
ten-bit code bytes, consisting of a start bit, eight 
data bits, and a stop bit. This results in a 

320-Azs- byte transmission time. The outer two framing bits 
are added by the transmitter for synchronization 
and are stripped off by the receiver, leaving a con- 
ventional eight-bit byte. Typically, a UART (Univer- 
sal Asynchronous Receiver/Transmitter) or ACIA 
(Asynchronous Communications Interface Adapter) 
chip can be used to convert from parallel to serial 
data formats. Some microprocessor chips contain 
on-chip serial input/output (I/O) ports and timers 
suitable for this purpose. 

The "reference model" for MIDI only defines the 
network. However, several aspects of the synthe- 
sizer are implied by the specification. The specifica- 
tion says only that a synthesizer shall have a MIDI 
receiver, a MIDI transmitter, and optionally, a MIDI 
THRU port. An electrical copy of the signal sent to 
the MIDI receiver is passed to MIDI THRU. The 
synthesizer is presumed to have on-board knobs and 
switches, and some sort of synthesis engine. Or- 
dinarily, the knobs and switches connect both to 
the synthesis engine and to the MIDI transmitter 
(Fig. 2). {This standard layout-emulated by most 
manufacturers-provides no way to decouple the 
synthesizer's on-board controls from its synthesis 
engine. This precludes the insertion of an external 

computer between the controls and the synthesis 
engine of a single instrument. Such synthesizers are 
conceptually similar to half-duplex computer ter- 
minals. There is a command in the MIDI specifi- 
cation to break the internal connection between 
controls and synthesis (described later), but it 
seems to be rarely implemented.} 

Some interconnection schemes for multiple syn- 
thesizers are as follows: 

Unidirectional-master talks to slave. 
Bidirectional-two masters drive each other as 

slaves. 
Ring-an extension of bidirectional connection 

to three or more devices. 
Daisy chain-one master drives several slaves 

using MIDI THRU. 
Star-one master has several unidirectional or 

bidirectional links. 

These interconnection schemes are shown in Fig. 
3-6. 

In the general case, we see that the IN/OUT/ 
THRU connection scheme forms a triple that joins 
with other triples to form a binary tree. This is 
illustrated in Fig. 7. The left branches receive 
MIDI input only from the root of the tree via MIDI 
THRU, plus they respond to their own controls. 
Right branches inherit MIDI input only from 
their immediate parent, but pass it along to all 
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Fig. 3. Multiple master/ 
slave configuration. Each 
box is a MIDI synthesizer 
expressed as a triple: T, I, 
and 0 are MIDI THRU, 
IN, and OUT, respectively. 
Synthesizers are labeled 
to the left with a capital 

letter; the expression to 
the right indicates the 
source of control informa- 
tion for each synthesizer. 

Fig. 4. Dual master/slave 
configuration. 

Fig. 5. Ring configuration. Fig. 6. Star configuration. 
M is a master controller. 

Fig. 3 

A: T I Oa 

B: T I O a+b 

C: T I O a+c 

Fig. 4 

A: T I O b+a 

B: T I O a+b 

Fig. 5 

A: T I O c+a 

B: T I O b+a 

C: T I O b+c 

Fig. 6 

T I O 

I ME-O M O I 

I O I O 

1 
0 left-branch children, while passing the result of 

their own control input only to their right-branch 
children. 

{It is important to emphasize that a single 
MIDI cable is a unidirectional single-talker/single- 
listener network. Using a MIDI THRU connection, 
it can become a multilistener network, but there is 
always just one fixed transmitter for any subtree. 
What is more, there is nothing in the specification 
that even hints at two-way communication. Thus, 
there are no provisions in the specification for meth- 
ods of interrogation and response of networked syn- 
thesizers. The significance of this limitation is 
elaborated later.} 

The Code Specification 

The other half of the specification details the na- 
ture of the information that is communicated over 
the physical medium. The code specification 
consists of three elements, modes, channels, and 
commands. 

MIDI Modes and Channels 

There are three modes and sixteen channels. The 
channels provide for multisynthesizer control with 
a single MIDI network, while the modes establish 
the relationship between the channels and the voice- 
assignment method within a synthesizer. The term 
"channel" is confusing to those who are familiar 
with the term as used in the recording industry. 
{Many terms used in the MIDI specification are 
only abstractly related to their more conventional 
meaning, as we see shortly.} Here is an explanation 
of MIDI's notion of channels. Many MIDI com- 
mands, collectively known as channel commands, 
have a field for a channel number. Synthesizers can 
be configured to receive or ignore channel com- 
mands depending on the channel number. This can 
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Fig. 7. The general case of 
MIDI interconnection 
forms a binary tree. The 
left branches receive MIDI 
input only from the root of 
the tree via MIDI THRU, 
and they respond to their 
own controls. Right 

branches inherit MIDI in- 
put only from their imme- 
diate parent, but pass it 
along to all left-branch 
children, while passing the 
result of their own control 
input only to their right- 
branch children. Syn- 

thesizers are labeled with 
capitals to the left of each 
box; the sum of their input 
and local controls is ex- 
pressed in lowercase to the 
right of each box. An im- 
plicit synthesizer A (not 
shown) is connected to the 

input of synthesizer B. The 
polynomial at the bottom 
of the figure shows the 
number of synthesizers 
playing each part. 

B: T I O1 a+b 

C: T I O a+c D: T I O b+d 

E: T I O a+e F: T I O c+f G: T I O b+g H: T I O d+h 

3(a+b)+2(c+d)+e+f+g+h 

be used to restrict which synthesizer(s) will respond 
to a particular channel command. 

The modes are called omni, poly, and mono. 
Omni mode causes a MIDI unit to accept com- 
mands on all channels. The synthesizer transmits 
on only one channel. In poly mode, each MIDI 
unit only receives and transmits commands on one 
channel. Voices are assigned polyphonically; that is, 
sequential note on commands generate chords. 
Mono mode is not what it sounds like: it is sup- 
posed to mean "one voice per channel." A synthe- 
sizer capable of mono mode operation will be 
assigned a range of channels (perhaps only one) to 
which it is to respond. Commands for each channel 
will control a single voice. Mono mode is used to 
provide for certain portamento effects not obtain- 
able with poly mode. Here subsequent note on 
commands could cause a glissando to the new note 
instead of a chord. Also, for polytimbral synthe- 
sizers-that is, ones capable of generating more 
than one timbre at a time-when mono mode is 
used, the different timbres of the single instrument 
can be assigned to particular channels. 

The modes are grouped into four states. {The 
MIDI specification refers to these states as "modes" 
as well, a confusion I have sought to avoid.} 

State 1 (omni on and poly). All commands re- 
gardless of channel are recognized by the re- 
ceiver and assigned to voices polyphonically. 

State 2 (omni on and mono). All commands re- 
gardless of channel are recognized by the re- 
ceiver and assigned to one voice. Only one 
voice sounds. 

State 3 (omni off and poly). Only channel com- 
mands matching that of the receiver are 
recognized and assigned to voices poly- 
phonically. 

State 4 (omni off and mono). Channel com- 
mands that match a range of preselected 
channels are recognized and are assigned one 
channel to one voice. 

{Dynamic voice allocation in poly mode can be 
problematic. If all voices are in use in a synthesizer 
and another note on command arrives, the syn- 
thesizer must decide how to cope with the new de- 
mand. While there are numerous solutions, the one 
most often chosen by manufacturers is to have the 
synthesizer steal the voice of the oldest sounding 
note on the presumption that the attention of the 
listener has been shifted away from it by subse- 
quent notes. This method fails badly when the note 
being stolen is, for example, a pedal point, in which 
case its absence becomes quite glaring. This is an 
example of a problem that requires musicological 
awareness to solve.} 

Where there are modes and channels, there are, 
or should be, means to change them. {Alas, while 
there are mode select commands, there are no 
channel select commands.} Mode select commands 
target selected channels, and the synthesizers on 
those channels are to switch to that mode if they 
can. {But if they cannot, their failure to do so will 
never be reported because MIDI is a unidirectional 
network.} 

MIDI provides no method to change channel as- 
signments. They must be changed by physically 
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Fig. 8. MIDI byte stream 
sequence. 

Status byte Arg 1 Arg 2 Status byte 
10010000 00101001 00010101 ... 10010000 

MSB Bit 6 Bit 0 

manipulating the synthesizer. Some synthesizers 
only transmit on MIDI channel 1 but can receive 
on any channel. Channel 1 is supposed to be the 
power-up default, but many manufacturers simply 
remember the last set channel across power cycles. 
This means there is no way for a MIDI network to 
be configured under program control; it must be 
done manually. 

MIDI Command Types 

A MIDI command is a sequence of one or more 
bytes of data. There are five categories of MIDI 
commands: channel, system common, system 
realtime, system exclusive, and reset. The system 
realtime category is highest priority, followed by 
system exclusive, with the rest grouped below 
them. System exclusive commands cannot be inter- 
rupted by any lower priority command. Realtime 
commands can interrupt any multibyte commands. 
The salient characteristics of the command types 
are as follows. 

Channel commands communicate event data, 
such as note on/off and status of device 
controllers. 

System common commands deal with sequence 
selection and location within the sequence. 
This is mostly for MIDI sequencers, which are 
devices that can store and regenerate MIDI 
commands. 

System realtime commands are for synchronizing 
a network of MIDI sequencers to a common 
clock. 

Reset terminates any activity in progress and re- 
initializes to the power-on condition. 

System exclusive is for device-specific data trans- 
fer, for sending patches, parameters, etc. The 
format of system exclusive only designates 
how it starts and where it ends; the content of 
the transfer is unspecified and is presumed to 

refer only to one vendor's equipment. Part of 
the preamble for system exclusive is a byte 
containing a unique manufacturer's identifica- 
tion number. Synthesizers matching that num- 
ber know to respond to the command, others 
ignore it. {System exclusive is the great escape 
hatch of MIDI. There are strong tendencies to 
solve problems by dumping solutions under 
this category of command. This both subverts 
what little standardization MIDI provides and 
helps guarantee that it will never be improved 
upon.} 

Format of Commands and Data 

Figure 8 illustrates the bitwise sequence and layout 
of a MIDI command, after the start and stop bits 
have been stripped off. The most significant bit 
(MSB) is a sentinel bit, which signals the beginning 
of a new command if it is set. If set, the rest of the 
byte is decoded as a status byte. Bits (6:4) contain 
a partial command type identification (ID). If they 
indicate a channel command, then bits (3:0) are 
the channel number of the command, otherwise 
bits (6:0) are taken as the complete command type 
identification (Fig. 9). 

MIDI specifies the number of trailing data bytes 
for each command type. Some commands take no 
data (such as reset), some one byte, some two, some 
any number. A new command is defined to com- 
mence whenever the sentinel bit of any byte is set. 
This restricts data to occupy the low-order 7 bits of 
each data byte. Table 1 provides a tabulation of the 
MIDI codes, their meanings, and the number of data 
bytes and their meanings. The Appendix provides 
additional descriptions of the commands. 

{Note that the control change command in Table 
2 includes mode changing, all notes off, and lo- 
cal/remote controls as well as device controls. It 
strikes me that this is an unhappy mixture of meta- 
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Fig. 9. Channel command 
layout. 

Status byte 
10010000 

Sentinel Command ID Channel 

phors. There should have been a separate command 
dealing with global status and control.} 

The specification says that when a subsequent 
command is identical to the preceding one (same 
command ID, same channel), the status byte need 
not be sent. This means that after the first com- 
mand, only data bytes need be sent until a com- 
mand with a different status byte must be sent. 
This can significantly reduce the amount of data 
transferred, but it depends upon the statistical prop- 
erties of the command stream how much savings is 
realized. 

Interfacing MIDI to Computers 

Insofar as MIDI implements a very similar physical 
discipline to standard computer terminal interfaces, 
one approach to interfacing MIDI devices to com- 
puters is to modify a standard computer terminal 
line. The adjustment includes modifying the baud 
rate to 31.25 Kbaud, and installing an opto-isolator. 
However, the host computer would be dealing with 
a large volume of time-critical, continuous pro- 
grammed I/O to support MIDI. This would place a 
major load on most microprocessors, reducing their 
ability to simultaneously address other tasks. It is 
better to offload the task to a peripheral processor 
designed to interface to MIDI on one side and to a 
computer on the other. 

I have worked with two such devices, one made 
by Sound Composition Systems (SCS), the MIDI 
Performer, the other a Roland MPU-401 MIDI Pro- 
cessing Unit.2 Both are small boxes containing 

microprocessor systems with I/O ports for MIDI 
and host computer communications. The host 
computer sets the unit to perform an operation 
such as record or playback, and the unit then inter- 
rupts the host only when MIDI commands or data 
are available or needed. This frees the host to per- 
form higher level support functions such as com- 
positional algorithms, analysis, display, and so on. 
The SCS device communicates with the host via a 
standard RS-232 computer terminal interface while 
the Roland unit interfaces directly to the bus of the 
host computer. By using a standard computer ter- 
minal interface, the SCS device can be hooked up 
to just about any computer using whatever driver 
software exists in the host for talking to terminals. 
Roland provides bus interfaces for some personal 
computers (including the IBM PC and Apple II). 
The interface itself is extremely trivial, and inter- 
faces to other busses are easy to build, but it is not 
so easily integrated as the SCS, since it also requires 
that a device driver for the unit be written for the 
host computer. 

The Roland unit, by going straight to the host 
computer's bus, does not have bandwidth problems 
as does the SCS unit. The SCS interface problem is 
a result of the difference between the 31.25 Kbaud 
MIDI rate and its 9600 baud host computer com- 
munication rate. Data overrun from a MIDI source 
to the SCS unit is quite likely when recording MIDI 
data, since the SCS unit can only pass along the in- 
coming MIDI data to the host at about a third of 
the speed of MIDI. While the SCS unit can buffer 
up to 8 Kbytes of MIDI commands, it will always 
remain a statistical question as to whether this will 
be sufficient for any particular MIDI command 
stream. For this reason, one is usually driven to use 
the methods SCS provides for filtering out continu- 
ous controller information, such as pitch bend 
and modulation, passing only the lower bandwidth 
event-oriented commands such as key on and key 
off. However, the necessity of doing this limits the 
unit's generality. The SCS unit could presumably 
run its host-computer link faster than 9600 baud 
(e.g., at 38.4 Kbaud). However, the software pro- 
vided on most computers to interface to standard 
computer terminals is not designed to handle sus- 
tained high transfer rates. Also, UARTs that support 

2. Note: Sound Composition Systems (Pasadena, California) has 
apparently gone out of business. A new company called Hinton 
Instruments (Oxford, England) makes a serial-to-MIDI interface 
called MIDIC (see Computer Music Journal 912]:71). The Hinton 
box may not suffer from the same throughput problems as the 
SCS box did because the Hinton box will run at 38.4 Kbaud. 
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Table 1: Summary of MIDI codes 

CHANNEL COMMANDS 

Status Arg 1 Arg 2 Mnemonic 

80 Key Velocity Key off 
90 Key Velocity Key on 
AO Key Pressure Polyphonic key pressure (after-touch) 
BO Index Value Control change 
CO Index (None) Program change 
DO Pressure (None) Pressure (after-touch) 
EO LSB MSB Pitch wheel change 

SYSTEM EXCLUSIVE COMMAND 

FO Mfg. ID ... System exclusive command 

SYSTEM COMMON COMMANDS 

F2 LSB MSB Program position select 
F3 Index (None) Program select 
F6 (None) (None) Tune request 
F7 (None) (None) End of system exclusive 

REALTIME COMMANDS 

F8 (None) (None) Timing clock 
F9 (None) (None) Undefined 
FA (None) (None) Start 
FB (None) (None) Continue 
FC (None) (None) Stop 
FD (None) (None) Undefined 
FE (None) (None) Active sensing 
FF (None) (None) System reset 

Note: All values are in hexadecimal notation. See the text for a further description. 

rates beyond 19.2 Kbaud are still somewhat rare. 
One must trade off the simplicity of the SCS hard- 
ware interface against these considerations. 

Storing MIDI command streams on disk in a host 
computer necessitates time-stamping the MIDI 
commands. Both the SCS and the Roland prepend 
a time stamp to all recorded MIDI commands, and 
expect a time-tag to precede all MIDI commands 
played back. The SCS unit provides a 16-bit resolu- 
tion time-tag, while the Roland provides 8 bits. The 
tick time is adjustable, with usable values in the 

range of 1-5 msec. The SCS unit does not provide a 
clock-continuation command, presumably figuring 
that 16 bits of clock resolution ought to provide 
enough distance between any two MIDI commands 
for their standard clock time. Roland's 8-bit counter 
resolution only covers about 1.2 sec at their default 
clock rate, requiring that the number of clock over- 
flows occurring between commands be kept. Roland 
uses the MIDI timing clock command to indicate 
clock overflows. While both methods seem ade- 
quate, I favor Roland's. For a performance of average 
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Table 2: Control change command indexes 

Status Index Argument Meaning 

DO 0 1IF Value MSB of continuous controllers 
DO 20 <* 3F Value LSB of continuous controllers 
DO 40 < 5F Value Switches 
DO 60 < 79 Value Undefined 
DO 7A (Value) Local control (7f = on, 0 = off) 
DO 7B (0) All notes off 
DO 7C (0) Omni off (All notes off) 
DO 7D (0) Omni on (All notes off) 
DO 7E (Channels) Mono on (Poly off) (All notes off) 
DO 7F (None) Poly on (Mono off) (All notes off) 

Note: All values are in hexadecimal. 

musical density, it is likely that the Roland for- 
mat will be more economical in bytes transmitted. 
Also, there is no limit to the size of the interval 
between two MIDI commands in the Roland format. 

A difficulty with both methods of time tagging is 
that the time-tag can legally have the MSB set, lead- 
ing to uncertainty when trying to parse corrupted 
data. This is no problem for well-formed command 
streams. However, if a stretch of bad data is encoun- 
tered, one can't simply look for the next byte with 
the MSB set in order to resynchronize on a status 
byte, as this might be just a time-tag. One must 
also look at the byte following to make sure its 
MSB is off. 

The protocol through which the MPU-401 com- 
municates to the host is rather convoluted. Instead 
of communicating state information to the host as 
to its place within the commands being processed, 
the MPU-401 requires that the host essentially du- 
plicate the internal state of the MPU in order to 
know what is going on. As a result, a device driver 
that avails itself of all of its diverse capabilities will 
be relatively complicated. 

Packaged computer/synthesizer/software systems 
are beginning to appear using these interfaces and 
others like them. Other vendors include Passport 
Designs, Musicdata, Hybrid Arts, and Jim Miller, 
an independent. Without a computer, about all one 
can do with MIDI is double voices. In order to get 
any compositional or editorial power, one must 
have a general-purpose computer (or a MIDI "se- 

quencer," which is usually a general-purpose com- 
puter with a custom user interface and MIDI I/O). 
Interfaces for computers usually target home com- 
puters, such as the IBM-PC, Apple II, Apple Mac- 
intosh, Commodore 64, etc. Some microcomputers 
from Yamaha and Atari are now being manufactured 
with a MIDI interface as a standard peripheral port. 
In other cases, a synthesizer is integrated directly 
into the microcomputer, such as the Yamaha CX5M. 
[Reviewed in Computer Music Journal 9(3)-Ed.] In 
addition, a multitude of homebrew interfaces are 
being constructed for everything from mainframes 
to lap computers. One company, J. L. Cooper, mar- 
kets MIDI interfaces and converters, including de- 
vices that use MIDI to control theater lighting. 

Packaged software for these systems provides for 
basic record/playback functions plus simple edit- 
ing. Most of the software adopts the metaphor of 
the multitrack tape recorder to structure the user 
interface. Thus, editing takes the form of "fast for- 
ward/rewind" and "punch in." Event-time correc- 
tion is usually provided to "discretize" notes to the 
nearest selected integer ratio of the beat. Some pack- 
ages provide means to display MIDI data as com- 
mon practice music notation. Results vary widely 
with the adequacy of the graphics, user interface, 
and the grip of the programmer on basic musical 
issues. 

Most packaged systems for MIDI, like MIDI it- 
self, are aimed at the working pop musician. As 
such, most are closed, proprietary systems. Few, if 
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any, provide a means whereby someone could adapt 
or extend a system to their own ends. Of course, 
absolutely none of them were written with the idea 
of providing a development environment for com- 
puter music research. 

Misconceptions About MIDI 

The foregoing is a relatively complete summary of 
the MIDI specification. However, there are still 
things that neither the specification nor my expla- 
nations have yet made clear. I will attempt to shed 
light on these by discussing some common miscon- 
ceptions. Regardless of what it is, MIDI serves no 
one if it is perceived for what it is not. 

Misconception 1: MIDI is a bus. It is not. A bus 
implies bidirectional communications and the pos- 
sibility of more than one bus master. MIDI is a 
unidirectional talker-listener network. The term 
"network" is even a little broad for MIDI. The 
MIDI specification does not preclude devices from 
being connected for interrogate/response communi- 
cation, but this form of communication would re- 
quire that the specification be extended to develop a 
vocabulary of what they could say. Such a capability 
could be used, for instance, by a master to config- 
ure a MIDI network automatically, by invoking 
responses that would return manufacturer's ID, 
channel number, and reception mode. Based on this 
information, the master could then emit change- 
mode commands, and (if they existed) change- 
channel commands. This is just for starters; the 
compositional and performance possibilities for 
true networking are endless (Bischoff, Gold, and 
Horton 1978). 

Misconception 2: MIDI does not have sufficient 
bandwidth to capture human performance. If we re- 
strict ourselves to keyboard instruments, the expe- 
rience of musicians I know who have used it is that 
it does have acceptable bandwidth. Its very success 
is a kind of proof of this, but let's take a closer look. 
As we have seen, a byte can be transmitted every 
320 ~sec over MIDI, and it typically takes 3 bytes 
per command, which gives us 1 msec per command, 
worst case. Let us take for example a keyboardist 
striking ten keys simultaneously. This produces 

ten note on commands, which serialized would be 
smeared over 10 msec. (This is assuming the un- 
likely event that all ten fingers managed to strike 
the keyboard simultaneously. This also does not ac- 
count for the MIDI command-continuation feature, 
which would reduce the transmission time to 7 
msec.) When compared to an average attack time 
for percussive instruments of 10 msec, we see that 
the smearing is not liable to be heard as multiple 
attacks, even when percussive timbres are being 
synthesized. 

Another way to view this is to realize that sound 
travels about /3 meter per millisecond. A delay of 
10 msec represents a distance between musical 
sound sources of 3 m. Amplified musicians typi- 
cally do not complain about being this distance 
from their loudspeakers. Also, this can be com- 
pared to the size of a symphony orchestra, which 
can successfully fuse a musical percept while flung 
out over more than 30 m. 

These are merely analogies, however, and this is 
not to say that millisecond-level serialization delays 
have no effect, only that they have no effect for the 
case of a keyboardist using MIDI. Recently, my col- 
league F. R. Moore did a simple experiment to ob- 
serve the effect of such delays on timbre. He gen- 
erated a waveform consisting of two single periods 
of a 1000-Hz sine wave which were separated by a 
1-msec silent interval. He then synthesized another 
sine wave pair separated by 2 msec, continuing this 
until he had pairs separated by all intervals between 
1 and 10 msec. The pairs were separated by 1 sec of 
silence each. What was heard when this was played 
was a sequence of clicks, where the pitches of the 
successive clicks described a subharmonic series. 
He concluded that while serializing commands 
does not have the effect of producing multiple at- 
tacks, it does have an effect on timbre, similar to 
comb filtering. Issuing MIDI commands that cause 
two instances of the same exact waveform to be 
started 1 msec apart is equivalent to applying a one- 
shot delay of 1 msec to the first one. 

Because of the crude nature of time control, MIDI 
is utterly inadequate for phase-level control of 
waveforms. This means synthesis of a single-fused 
timbre cannot be split reliably across MIDI syn- 
thesizers. This would also rule out control of stereo 
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or dichotic sound imaging via MIDI. Even though 
the effect of the serialization delays can occasion- 
ally be seen as a plus, as when chorusing effects are 
desired, however, we must not confuse an inherent 
artifact of a system with a feature of the system. 
The important question is not "does it matter?" so 
such as "when does it matter?" 

In addition to event data, MIDI can be used to 
transmit continuously sampled data. The 7-bit sam- 
pling rate is 3125 Hz, while the 14-bit rate is 1562 
Hz. While this is very slow for acoustic pressure 
functions, it is not too bad as a control rate for lim- 
ited applications. For comparison, we can recall the 
GROOVE system at Bell Laboratories (Mathews and 
Moore 1970), where it was experimentally deter- 
mined that functions of time representing general 
human performance gestures could usually be ade- 
quately represented at a sampling rate of about 200 
Hz per function. Assuming this is correct, it shows 
that, for the worst case, MIDI is capable of trans- 
mitting nearly eight 14-bit functions at the rate of 
200 samples per second. This means, for instance, it 
could presumably handle continuous pitch change 
information for all strings of a violin or guitar. 
However, this leads us to our next assumption. 

Misconception 3: Existing commercial synthe- 
sizers run at full MIDI bandwidth. Some do, maybe, 
but not the ones I looked at. I discovered this while 
researching the question of command smearing for 
Misconception 2. I attempted to hear the result of 
ten simultaneous attacks by transmitting first one, 
then two, and so on up to ten note on commands at 
maximum MIDI bandwidth to a well-known MIDI 
synthesizer from a host computer. The results were 
surprising, to put it mildly. The synthesizer re- 
quired an average of about 2.5 times as long to turn 
on a voice as to receive a MIDI command. In the 
worst case this was 20 msec to turn on six voices. 
Mysteriously, it ran faster turning on 10 voices 
(taking about 17 msec). I then tried another well- 
known synthesizer with mixed, but generally poor, 
results. This experiment was limited and informal, 
but it points up that performance is not dictated by 
the MIDI specification. 

Misconception 4: The data rate requirement for 
performance gesture capture is the same require- 
ment as that for synthesizer control. MIDI builds 
this assumption into the specification. In fact the 

data rate requirement for synthesizer control is usu- 
ally far greater than for gesture capture. The one in- 
stance where the rates are equal is where a straight 
performance recording is made from a gesture in- 
put device to a host computer which then simply 
regurgitates the performance. However, this is the 
most trivial use of MIDI. More likely uses include 
overdubbing and computer-generated scores, both of 
which would typically involve much greater band- 
width than that generated by a single performer. In- 
deed, a critical aspect of any such system would be 
that it does not limit the output to the capabilities 
of performers! 

Another strong temptation will be to use MIDI 
system exclusive commands to modify synthesizer 
parameters during performance execution to simu- 
late more interesting control functions than are 
available in the synthesizer's hardware. Thus the 
host-computer-to-synthesizer direction will tend 
to be denser than the performance-input-to-host- 
computer direction. The density will grow with in- 
creasingly sophisticated use of MIDI. That MIDI 
does not address this obvious problem stems from 
MIDI's apparent origin as a gesture capture mecha- 
nism, for which the prevailing low data rate seemed 
acceptable. 

This problem will probably not deter people from 
trying to squeeze blood from this turnip by using 
MIDI to control ever larger arrays of more and more 
capable digital music devices. The results obtained 
are likely to be sufficient for small networks and 
initial efforts, but as the idea of music instrument 
networking takes hold, I expect to see serious at- 
tempts to address the bandwidth limitations. 

Another concern that falls into this category is 
the quantity of synthesis resources a single per- 
former is capable of manipulating in real time. In 
the case of keyboards, the temptation is to apply 
the "ten finger" rule: "nobody can play more than 
10 fingers at once," as a way of justifying low num- 
bers of polyphonic voices. However, standard Ro- 
mantic keyboard literature (e.g., Chopin) shows that 
this rule does not hold as soon as the sustain pedal 
is depressed. On pianos, the sustain pedal lifts the 
dampers on the strings, causing all notes initiated 
to be sustained while the pedal is down. It is not 
clear how many voices are required by such music, 
but a good guess is no less than 88, the number 
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of keys on a standard piano. Also, consider con- 
ducting: a wave of the hand can result in a mass 
of instruments playing. When musicians are given 
computer control over synthesizers, the natural 
course of things is to require ever more control over 
ever more resources. 

What, Then, Is MIDI Good for? 

MIDI is certainly good for what it was designed to 
do and to be. It was designed by manufacturers to 
extend the means of control over their synthesizers 
in a device-independent and vendor-independent 
way. It is standard, simple, inexpensive, and effec- 
tive at what it does. These positive achievements 
cannot be denegrated. Beyond the obvious bugs 
in the specification, most of the difficulty with 
MIDI comes not from MIDI but from the attempt 
by others to make it do that for which it was not 
designed. 

Like most things, MIDI was not designed with 
the full significance of what it could be in mind. 
MIDI has opened a Pandora's box of possibilities for 
music instrument networking that were either not 
forseen by its developers, or were ignored. The prob- 
lem is that none of these dreams will now fit back 
into the box. It seems that we can either ignore 
the issue altogether, make do with MIDI, or try to 
make a more adequate vehicle for our networking 
aspirations. 

What Are the Chances that MIDI Can Be 
Improved? 

All who talk of change to the MIDI specification 
must first examine the forces that brought it into 
being. There are two ways that standards come into 
the world. A formal standard is wrought by a com- 
mittee working under the auspices of an organi- 
zation such as the American National Standards 
Institute (ANSI). On the other hand, an informal 
standard is worked out by a group of practitioners 
in need of a common approach. MIDI is clearly in 
the latter category. The MIDI specification came 
from an informal group of manufacturers working 
together. Today it is the province of a group known 

as the Manufacturers MIDI Association (MMA), 
whose authority comes from their joint share of a 
majority of the commercial synthesizer market. 
Membership is restricted to commercial interests 
such as manufacturers, software houses, and sys- 
tems integrators. Another major force in this arena 
is the Japan MIDI Standards Association, which 
works closely with the MMA. 

The manufacturers have a considerable stake in 
the commercial success of MIDI and have an under- 
standable unwillingness to fiddle with it. They are 
unwilling at this time to go beyond ironing out the 
remaining ambiguities in the standard, and making 
sure that all vendors' synthesizers will work to- 
gether under MIDI. Even this little should be con- 
sidered an heroic accomplishment, considering the 
distance they have come to get as far as they have. 
It was by no means a foregone conclusion that the 
"iron curtains" that existed between manufacturers 
could be broached by MIDI. 

The International MIDI Association (IMA) is the 
"users group" for MIDI. Started in 1983, this group 
describes itself as 

a non-profit organization dedicated to the evo- 
lution, integrity and continuity of the Musical 
Instrument Digital Interface. IMA maintains a 
non-competitive organization interested in the 
accurate dissemination of information concern- 
ing all aspects of MIDI-related instruments and 
products. The International MIDI Association 
believes in the privacy of its membership and 
the protection of proprietary information (IMA 
1983). 

They publish a newsletter to members called the 
IMA Bulletin, which contains product announce- 
ments, reviews, short articles, tutorials, and broad- 
sides. 

What the manufacturer's group refers to as "inde- 
pendents" are the most active constituency of the 
IMA. These are individuals and small businesses 
who have an interest in utilizing MIDI, either com- 
mercially or musically. This is the group that most 
actively presses for a more adequate networking 
standard, since it is this group that, by working 
with MIDI, experiences its limitations most keenly. 

Although the IMA has attempted to address is- 
sues of standardization and the limitations of MIDI, 
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they have not received much support from the 
manufacturer's group, as many expected. For in- 
stance, in the spring of 1984 the IMA sponsored a 
conference called MIDISOFT-84 at the Mark Hop- 
kins Hotel in San Francisco. The population of the 
conference consisted almost entirely of indepen- 
dents, with a sprinkling of engineers and manage- 
ment from the more enlightened manufacturers. 
Papers centered on two issues, how to exploit the 
potential of MIDI, and how to formalize standards. 
Much rhetoric was spent on lamenting the polarity 
between manufacturers and independents. This was 
interspersed with some very insightful comments 
on the current state of affairs, and on the likely fu- 
ture directions, some of which I am repeating here. 

Yet it would be wrong to view the manufacturers 
as inextricably locked into the current MIDI speci- 
fication. One must assume that the manufacturers 
see the limitations of MIDI as a threat to their own 
well-being in the long run. The worst-case scenario 
would be if individual manufacturers attempted to 
undercut the MIDI standard with proprietary net- 
working improvements for their own line of ma- 
chines. One of the most profound impacts of MIDI 
on the manufacturers is that it has converted a 
vertically integrated market into a horizontally 
integrated one. Before MIDI, each manufacturer 
produced product lines that were self-contained and 
often incompatible with the product lines of other 
manufacturers. Now manufacturers can no longer 
count so heavily on sales of one item of their prod- 
uct line carrying a package sale. The possibility of 
both improving MIDI and regaining a vertical mar- 
ket must be sorely tempting. This, however, would 
be a fatal way to improve MIDI. The fact of the 
matter is that independents and musicians using 
MIDI depend for progress on a strong, cohesive 
manufacturers' MIDI group that can impose change 
in a uniform way. 

What to Improve about MIDI and How 

Politics aside, MIDI will certainly change some- 
time, or be superseded. When that happens, what 
will we have learned from it? 

First let's consider the issue of speed. Clearly, 

31.25 Kbaud will become too slow soon if it is not 
already. But how fast should it be? 

One idea is that it could be any speed. Some 
UARTs are able to detect the speed of transmission 
and adapt automatically. This way, speed could grow 
as needed and as the technology was able to keep 
up. This argument is curiously reminiscent of argu- 
ments to the same effect made by the manufac- 
turers of computer terminals in years past. In the 
beginning, everyone said, "terminal networks do 
not have to run any faster than a fast typist can 
type." So the initial baud rates ranged from 11 to 15 
characters per second, comfortably beyond this 
range and comfortably within prevailing techno- 
logical limits. However, then came word processors. 
As text editing programs became smarter at getting 
the computer to do more work with fewer key- 
strokes, users started wishing they could see the re- 
sults more quickly too. The baud rates went up. 
And they are still climbing. Rates of 9600 baud are 
now common, with much higher rates not far be- 
hind. What drove the increase was not faster typing, 
but the greater bandwidth required by powerful text 
and graphics editors to drive the display. To my 
mind this neatly parallels the situation with MIDI: 
even if we assume that the current rate is suffi- 
cient for performance capture (the analog of typing 
speed), it will certainly not long be sufficient for 
computer control of synthesizers (the analogy to 
driving the display) as users become smarter at get- 
ting more music from less performance. The real re- 
sult of this laissez faire attitude in the development 
of computer terminal networking was that it suf- 
fered decades of accretions and kludges as it grew, 
resulting in a kind of anti-standard. Is this what we 
want for music? 

An interesting alternative was proposed spon- 
taneously on the floor of the MIDISOFT-84 confer- 
ence, alluded to above, by Guruprem Khalsa. He 
invited the attendees to consider estimating the 
bandwidth requirements that will be needed at 
some point in the future, then identifying some 
technology which would allow us to achieve that 
bandwidth now. This would resolve the issue of 
throughput in a way that would satisfy everyone for 
that period of time, freeing us to focus on the task 
of using that bandwidth instead of being drained by 
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the subtask of retrofitting as data rates evolved. 
Gordon Moore, one of the founders and current 
chief executive officer of Intel Corp., presented 
a formulation that has since become known as 
"Moore's law" as a way to estimate growth in the 
electronics industry. It states that for year y, C cx 
2y-'960, that is, complexity will double every year 
from 1960, which was the year he proposed it. If we 
were to update the year and apply that to MIDI, we 
might have C oc 3125-2y-198. In 12 years the band- 
width requirement would be on the order of 12 
Mbytes/sec. This is a comfortable rate using cur- 
rent networking technology. It can be objected that 
the technology to run at these rates will be more 
expensive and for the current purposes of MIDI 
would not be warranted. Cost is a powerful argu- 
ment when considering the economies of large- 
scale manufacturing. But is it ultimately economi- 
cal to live with a serious flaw that weakens the 
standard? 

Another attendee at the MIDISOFT-84 conven- 
tion, Charles Goldfarb, questioned the nature of 
MIDI coding. To explain his position, we need an- 
other lesson from the history of word processing 
and terminal technology. In the beginning of com- 
puter terminal technology, the ASCII code (Ameri- 
can Standard Code for Information Exchange) was 
developed with Teletype technology in mind. Some 
codes were reserved for control of (then state of the 
art) Teletype machines, such as line feeds, form 
feeds, carriage motion, and simple communications 
protocols. It quickly became apparent that docu- 
ment preparation could be done more easily with 
a macro language embedded in the text that con- 
densed the complicated control codes required to 
do anything useful into simple mnemonics. Even- 
tually it was noticed that this approach was not de- 
vice-independent since the mnemonics themselves 
still referred to device specific actions. Transferring 
the document to a different printing system re- 
quired substantial alteration of the document. It be- 
came clear that what was really needed was a way 
to describe page layout in the terms of the formal 
structure of the document, rather than in terms of 
the actual structure of the printer, leaving the job of 
achieving this structure for any given printer to a 
document compiler. This resulted in the develop- 

ment of high-level document compiler programs 
such as troff and TEX. Standards for representing 
document formatting, such as SGML, are emerging 
to consolidate this area. Goldfarb suggests that we 
can ask the same thing about MIDI: is its collection 
of codes targeting the wrong thing? 

While this analogy between MIDI and terminal 
technology is suggestive, it is not complete. By de- 
sign, MIDI codes represent the performed structure 
of music. This is a higher level than coding for syn- 
thesizer parameters, and a lower level than repre- 
senting the formal structure of the music. MIDI is 
to a small degree already device-independent, since 
the encoded performance does not carry with it 
a specific meaning as to the sound the resulting 
synthesizer is to make. It is perfectly adequate for 
MIDI synthesizers to communicate MIDI codes; 
a higher level representation is not needed here. 

However, the picture changes when we consider 
how we should represent music made on MIDI syn- 
thesizers in a computer memory. Here, we will in- 
deed make the same mistake with MIDI that was 
made for document preparation unless we develop 
representations which can express the formal struc- 
ture of music. A good example of a hierarchical 
data structure for music can be found in the work 
of William Buxton (1980). To this end, Goldfarb has 
recently broached the subject of developing a stan- 
dard for music databases through ANSI. A meeting 
was held in Palo Alto in May of 1985 to the end of 
establishing an ANSI study group to consider this 
problem. 

A problem with MIDI is that it resists attempts 
to abstract it further. Speaking at a panel on MIDI 
during the 1984 ICMC in Paris, Buxton pointed out 
the confusion in MIDI between a network and a 
data structure. For him, basic to fixing MIDI is sepa- 
rating the structure of the information being com- 
municated from the structure of the network. As it 
stands, they are inextricably linked, which means 
that the one can't be changed without the other. 

What of the Future? 

A corollary of Moore's law states that $ \ C, in 
other words, cost goes up linearly for exponential 
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growth in complexity. F. R. Moore has argued (Moore 
1981) that while traditional musical instruments 
are becoming more and more costly to produce, 
electronic instruments are becoming both more in- 
teresting and cheaper. Four years ago he predicted 
that there would be a point at which these two 
functions of time would cross, and that there would 
soon be a time when interesting electronic instru- 
ments would be cheaper than traditional instru- 
ments. Were this to happen, he argued, it would 
mean the wide availability of these new instru- 
ments, and the serious utilization of them in the 
music of our culture. Surveying today's popular 
music scene, it can be easily argued that this time 
has already arrived. The impact is also evident in 
schools of music. Projects to explore these new 
low-cost technologies in many computer music 
laboratories are underway. 

Those who have access to more powerful tools 
can often be quite caustic about MIDI, seeing only 
its (numerous) limitations. 

Sooner or later there has got to be a reckoning 
between musicians and designers of commer- 
cially available equipment. Some scientists be- 
lieve that their mere capacity to respond, in 
some vague way, to art qualifies them to make 
judgments about it. This attitude is represen- 
tative of a terrible cultural problem. Their na- 
ive judgments are manifested musically in the 
sounds and design of commercially available in- 
struments that are just appalling. I shudder to 
think about the effect on the generation of 
young listeners who are being exposed to such 
a low acoustic standard, especially at such high 
volume levels. I think it's very serious.- 
Charles Wuorinen (Boulanger 1984). 

Irritating as Wuorinen's comments may be to 
some, he has a point. Engineers and scientists who 
want to contribute to the technology of music must 
have a deep insight into the aesthetics of music, 
otherwise the systems implemented will be archaic 
and inflexible. Of course, it works the other way 
too: without deep insight into the means of produc- 
tion, composers and performers will miss the es- 
sential contribution which computer technology 
can make, and the resulting music will be anach- 
ronistic. 

There are also complaints about the nature of the 
human interface provided by typical commercial 
synthesizers. 

A major problem of synthesizers to date, espe- 
cially recently, is that they constrain the per- 
former to expressing ideas through a limited set 
of gestures. (Ironically, some electronic instru- 
ments from the 1930s to the 1960s were more 
flexible in this regard.) This "straitjacket" of 
most "over-the-counter" systems (for example 
the piano-type keyboard synthesizer), has meant 
that in many cases, the medium of expression 
is totally at odds with the musical idea. To fol- 
low on this, then, if gesture and idea are tied, 
and the device is the instrument for capturing 
the gesture, then the range of input devices 
could be as diverse as the range of musical 
ideas.-William Buxton (Appleton 1984). 

There are reasons to be happy about MIDI, in 
spite of what it is, when we consider that it is help- 
ing to stimulate research in performance, impro- 
visation, and interactive composition. Many are 
enthusiastic about using MIDI to help move beyond 
the limitations of tape music. Most are willing to 
put up with temporary gestural and sonic limita- 
tions to achieve this. Joel Chadabe's work in inter- 
active composition (Chadabe 1984; Chadabe and 
Meyers 1978), Buxton's work with human interfaces 
(Buxton 1980), Appleton's work with the Synclavier, 
and many other projects as well stem from the mo- 
tive to reclaim performance gesture as a part of the 
process. 

My enthusiasm for this subject is similarly moti- 
vated. Throughout my career in electronic and then 
computer music, little of substance could be done 
in live performance. Analog synthesizers offered 
real-time control, but over pathetically limited 
resources. Software sound synthesis offered tremen- 
dous resources, but none of it in real time. Com- 
positions for tape and live instruments usually 
required the live instrumentalists to synchronize 
their performance to the tape (unless one chose to 
declare that synchronization was unimportant, a 
limited aesthetic option). This made the live per- 
formers slaves to the tape part. Now at last we are 
in a position to make the performer the indepen- 
dent variable and the synthetic part the dependent 
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variable. A whole continuum of possibilities has 
opened up. Tape music is at one end, where the 
electronics ignores the performer. At the opposite 
end of the continuum are systems that drive syn- 
thesizers directly from sensors that extract perfor- 
mance parameters. Here the electronics is slave to 
the performer. In between are many interesting 
areas, such as automatic accompaniment (Dannen- 
berg 1984; Vercoe 1984), and numerous other strate- 
gies where the electronics and the performer share 
control. A computer science discipline called con- 
trol theory (Rouse 1981) is devoted to considering 
human/machine interaction modalities, static and 
dynamic systems, and related issues. Suddenly, this 
seems quite germane to computer music. 

Unfortunately, it appears that the needs of the re- 
search community will continue to be unaddressed 
in the marketplace. Most MIDI-based computer 
systems will continue to be directed at standard ap- 
plications for nonprogrammers. Many will not even 
be directed at musicians but will be used for such 
things as to correct "wrong notes" and provide 
simple accompaniment for novices. 

It certainly appears inevitable that, when the 
general-purpose facility gives way to, in the 
most exalted cases, "work stations," and in 
the least exalted ones, "glorified organs," the 
inflexibility that will result will be attended, 
I fear, by a cessation of imaginative develop- 
ments, both in terms of the materials of music 
and in the ways of organizing these materials.- 
Roger Reynolds (Boulanger 1984). 

It is clear that we will continue to have to im- 
provise systems that meet our needs from the best 
available technology. As a result, the field seems 
destined to be driven by technological imperatives 
for at least the near future. This has an interesting 
implication, which can be exposed with the follow- 
ing syllogism: computer music is to computer tech- 
nology as the steamboat was to steam engine tech- 
nology, meaning that computer music is still 
mostly an applied discipline, like the development 
of steamboats. We are aligned with the historical 
position of Fulton, rather than Watt. Furthermore, 
we are at the point in the development curve prior 
to where steamboats became capable of reliable 
navigation. We are still mostly engaged in improv- 

ing the technology to yield the benefits we know 
are there. Just as reliable worldwide navigation had 
to wait for the steamboat, many of the experimental 
research fields awaiting us depend on the avail- 
ability of appropriate tools. To take other examples, 
the field of microbiology was only possible after the 
advent of the electron microscope; astronomy was 
only possible after the perfection of the telescope. 
(Another analogy to computer music can be bor- 
rowed from the history of astronomy: before the 
telescope, astronomy was called astrology. After the 
perfection of the musical equivalent of the tele- 
scope, will musicology become musiconomy?) 

The musical equivalent of the telescope will 
probably be a system that combines a special- 
purpose synthesizer with a general-purpose com- 
puter to provide extensible musical data abstrac- 
tions and operations. While the hard part of systems 
integration would be accomplished this way, every 
level of the hardware and software of the resulting 
system would have to be in the public domain, be 
easy to modify, and be completely documented. 

Fortunately, progress is being made along these 
lines in many places. One example is the computer 
music workstation development project at the 
Computer Audio Research Laboratory. We mean by 
this term a microcomputer system with the ca- 
pability of running either out of real time for gen- 
eral-purpose signal processing and composition, or 
running in real time for performance processing and 
direct synthesis. In the latter case, the system uses 
special hardware to do performance capture, analy- 
sis, and synthesis. The goal is to extend the range of 
musical research with such a tool to include perfor- 
mance. Our current prototype uses MIDI devices in 
combination with other sources and sinks of infor- 
mation (Fig. 10), and it is from this work that I have 
garnered most of the experience related in this ar- 
ticle. This development effort is aimed at providing 
low-cost tools to the research community that at- 
tempt to meet the criteria of those whom I have 
quoted above (among others). This work would not 
have been possible prior to the advent of sophisti- 
cated, standardized, low-cost, open-architecture 
components. 

The relationship between electronic-instrument 
manufacturers and the computer music community 
has been rocky in the past. However, I see the ad- 
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Fig. 10. Performance labo- 
ratory at CARL. Oval com- 
ponents are MIDI devices; 
squares are processors. 
Components are: Yamaha 
DX7 synthesizer, Roland 
MKB-1000 weighted-action 

piano keyboard, Yamaha 
TX-816 synthesizer, 
Roland MPU-401 MIDI 
controller, Force II 
MC68000 VME-bus CPU, 
Sun Microsystems Inc. 
SUN workstation. The Per- 

formance Processor is an 
in-house real-time perfor- 
mance processing system 
under development. These 
facilities are in addition to 
our regular timesharing 
computer resources. 

Yamaha 
DX7 

MIDI 

Roland 
MKB-1000 

Performance Performance 
MIDI --- processor O. inputs 

Roland 
MPU-401 

MIDIForce Serial SMI 

0 --d 

SUN 
aMC68000 data workstation 

Yamaha 
TX-816 

vent of MIDI as the first sign that the commercial 
synthesizer industry is becoming relevant to the 
computer music community. By providing low cost, 
standardized performance processors and synthe- 
sizers, our field is gaining tools that will have a 
broad impact on the kinds of subjects we can inves- 
tigate and on the numbers of researchers who can 
participate. In a sense, real-time control research is 
now the province of anybody with a MIDI synthe- 
sizer and a desktop computer. Some (McConkey 
1984) even see the fading away of "the distinction 
between synthesizers and computer music"-mean- 
ing, presumably, the distinction between those who 
use commercial synthesizers and those who have 
access to facilities of computer music research cen- 
ters. Perhaps so, but there will always be a distinc- 
tion between making music and doing musical 
research, even if the latter is in the form of musical 
compositions that use commercial synthesis sys- 
tems. The research uses of computer music tools- 
both scientific and musical-will always lead 
commercial application. The development of MIDI 
signals the emergence of several important technol- 

ogies from the laboratory and into the field. If the 
intercommunication between the synthesizer in- 
dustry and the computer music community can 
grow, as I see happening all around me, it presages 
better things to come. 
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Appendix 

In the following descriptions, the values in paren- 
thesis indicate arguments to the command. 

Channel Commands 

key off (key, velocity)-turns off one voice playing 
key. Velocity is used to determine the character- 
istic of decay. 

key on (velocity, key)-turns on one voice with 
pitch key. Velocity is used to determine the char- 
acteristic of attack. In poly mode, sequential key 
on commands create chords. In mono mode, if a 
voice was sounding, a new key on command will 
simply shift pitch to the new key, providing the 
mechanisms for a legato effect. As a special case, 
a key on command with a velocity of 0 is a form 
of key off. Key indices encode equal-tempered 

semitones. Middle C is key index 60. Five-octave 
keyboards range from 36 to 96. Eighty-eight-note 
keyboards range from 21 to 108. Default velocity, 
in the absence of pressure sensors, is 64. 

polyphonic key pressure (key, pressure)-encodes 
key bottom pressure change for the indicated key 
on the indicated channel. It is sent by keyboards 
that discriminate individual key bottom pres- 
sure; it is recognized by polyphonic synthesizers 
capable of responding to individual key pressure 
changes. 

control change (index, value)-supplies a new value 
for indexed performance controllers, such as 
modulation wheels, joysticks, switches, pedals, 
etc., but not pitch benders. The upper range of 
indexes are reserved for mode-setting commands. 
(See Table 2.) 

program change (index)-selects a timbre or syn- 
thesis technique. 

channel pressure/after-touch (pressure)--pressure 
change affects all voices responding to that 
channel. 

pitch bend (LSB, MSB)-encodes a 14-bit pitch 
bend quantity from a pitch wheel. The value of 
8192 corresponds to the center detent. The actual 
range of pitch change for any value of pitch bend 
is defined in the synthesizer. 

System Exclusive Command 

system exclusive (manufacturer ID number)- 
sends manufacturer-specific synthesizer informa- 
tion, such as patches, parameters, functions, and 
messages. Manufacturer ID numbers are assigned 
by the International MIDI Association. Informa- 
tion following the ID number is manufacturer- 
specific. This command is terminated by the end 
of block command or by starting any other com- 
mand. System exclusive commands are nonpre- 
emptive. 

System Common Commands 

These commands are for sequencer control. For "se- 
quencer" one can also read "computer." 
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position select (MSB, LSB)-select starting position 
within a sequence, specified by a 14-bit index. 

program select (index)-select a sequence by its 
index. 

tune request-adjust tuning of synthesizers. 
end of system exclusive-the official way to termi- 

nate a system exclusive command. 

Real-time Commands 

Real-time commands can preempt all commands in- 
cluding system exclusive, if necessary, to preserve 
timing. 

timing clock-emitted 24 times per quarter note 
by a master sequencer to synchronize time bases 
between multiple sequencers. At MM = 60, a 
quarter note equals 1 sec. 

timing clock with measure end-sent instead of 
timing clock at the end of measures. 

start-start sequencers, begin sending timing 
clocks. 

continue-continue sequence from where it was 
stopped on the last timing clock. Begin sending 
timing clocks. 

stop-stop sequencers. The stop command is then 
continuously sent in substitution for timing 
clock to maintain synchronization. This allows 
for "lead-in" and "punch-in" to be synchronized. 

active sensing-an "I am alive" signal emitted a 
few times a second (no less than every 320 msec, 
according to the specification) to indicate the 
continued functioning of a transmitting MIDI de- 
vice. Receiver should stop synthesis if active 
sensing commands stop coming. Note: active 
sensing commands are preempted by all other 
MIDI commands. Thus, they cannot be relied on 
for timing information. 

system reset-reset to power-on condition. 
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